phoenix-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From sudhir patil <spatil.sud...@gmail.com>
Subject Re: Materialized views in Hbase/Phoenix
Date Sat, 12 Oct 2019 12:25:55 GMT
Few options

1. Have you checked olap db’s on top of hbase like Kylene? It would fit agg
requirement

2. Writing hbase coprocessor to agg and save and save another table or
column family? Implementing coprocessor is not trivial though

On Sat, 12 Oct 2019 at 12:49 AM, Nicolas Paris <nicolas.paris@riseup.net>
wrote:

> > If one of the tables fails to write, we need some kind of a rollback
> mechanism,
> > which is why I was considering a transaction. We cannot be in a partial
> state
> > where some of the ‘views’ are written and some aren’t.
>
> why not writing to tables to phoenix and if both succeed,
> then rename the original tables and the new tables.
> if succeed, then drop the old tables.
>
>
> On Fri, Sep 27, 2019 at 04:22:54PM +0000, Gautham Acharya wrote:
> > We will be reaching 100million rows early next year, and then billions
> shortly
> > after that. So, Hbase will be needed to scale to that degree.
> >
> >
> >
> > If one of the tables fails to write, we need some kind of a rollback
> mechanism,
> > which is why I was considering a transaction. We cannot be in a partial
> state
> > where some of the ‘views’ are written and some aren’t.
> >
> >
> >
> >
> >
> > From: Pedro Boado [mailto:pedro.boado@gmail.com]
> > Sent: Friday, September 27, 2019 7:22 AM
> > To: user@phoenix.apache.org
> > Subject: Re: Materialized views in Hbase/Phoenix
> >
> >
> >
> > CAUTION: This email originated from outside the Allen Institute. Please
> do not
> > click links or open attachments unless you've validated the sender and
> know the
> > content is safe.
> >
> >
> ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
> >
> > For just a few million rows I would go for a RDBMS and not Phoenix /
> HBase.
> >
> >
> >
> > You don't really need transactions to control completion, just write a
> flag (a
> > COMPLETED empty file, for instance) as a final step in your job.
> >
> >
> >
> >
> >
> >
> >
> > On Fri, 27 Sep 2019, 15:03 Gautham Acharya, <gauthama@alleninstitute.org
> >
> > wrote:
> >
> >     Thanks Anil.
> >
> >
> >
> >     So, what you’re essentially advocating for is to use some kind of
> Spark/
> >     compute framework (I was going to use AWS Glue) job to write the
> >     ‘materialized views’ as separate tables (maybe tied together with
> some kind
> >     of a naming convention?)
> >
> >
> >
> >     In this case, we’d end up with some sticky data consistency issues
> if the
> >     write job failed halfway through (some ‘materialized view’ tables
> would be
> >     updated, and some wouldn’t). Can I use Phoenix transactions to wrap
> the
> >     write jobs together, to make sure either all the data is updated, or
> none?
> >
> >
> >
> >     --gautham
> >
> >
> >
> >
> >
> >     From: anil gupta [mailto:anilgupta84@gmail.com]
> >     Sent: Friday, September 27, 2019 6:58 AM
> >     To: user@phoenix.apache.org
> >     Subject: Re: Materialized views in Hbase/Phoenix
> >
> >
> >
> >     CAUTION: This email originated from outside the Allen Institute.
> Please do
> >     not click links or open attachments unless you've validated the
> sender and
> >     know the content is safe.
> >
> >
>  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
> >
> >     For your use case, i would suggest to create another table that
> stores the
> >     matrix. Since this data doesnt change that often, maybe you can
> write a
> >     nightly spark/MR job to update/rebuild the matrix table.(If you want
> near
> >     real time that is also possible with any streaming system) Have you
> looked
> >     into bloom filters? It might help if you have sparse dataset and you
> are
> >     using Phoenix dynamic columns.
> >     We use dynamic columns for a table that has columns upto 40k. Here
> is the
> >     presentation and optimizations we made for that use case: https://
> >     www.slideshare.net/anilgupta84/phoenix-con2017-truecarfinal
> >
> >     IMO, Hive integration with HBase is not fully baked and it has a lot
> of
> >     rough edges. So, it better to stick with native Phoenix/HBase if you
> care
> >     about performance and ease of operations.
> >
> >
> >
> >     HTH,
> >
> >     Anil Gupta
> >
> >
> >
> >
> >
> >     On Wed, Sep 25, 2019 at 10:01 AM Gautham Acharya <
> >     gauthama@alleninstitute.org> wrote:
> >
> >         Hi,
> >
> >
> >
> >         Currently I'm using Hbase to store large, sparse matrices of
> 50,000
> >         columns 10+ million rows of integers.
> >
> >
> >
> >         This matrix is used for fast, random access - we need to be able
> to
> >         fetch random row/column subsets, as well as entire columns. We
> also
> >         want to very quickly fetch aggregates (Mean, median, etc) on this
> >         matrix.
> >
> >
> >
> >         The data does not change very often for these matrices (a few
> times a
> >         week at most), so pre-computing is very feasible here. What I
> would
> >         like to do is maintain a column store (store the column names as
> row
> >         keys, and a compressed list of all the row values) for the use
> case
> >         where we select an entire column. Additionally, I would like to
> >         maintain a separate table for each precomputed aggregate (median
> table,
> >         mean table, etc).
> >
> >
> >
> >         The query time for all these use cases needs to be low latency -
> under
> >         100ms.
> >
> >
> >
> >         When the data does change for a certain matrix, it would be nice
> to
> >         easily update the optimized table. Ideally, I would like the
> column
> >         store/aggregation tables to just be materialized views of the
> original
> >         matrix. It doesn't look like Apache Phoenix supports materialized
> >         views. It looks like Hive does, but unfortunately Hive doesn't
> normally
> >         offer low latency queries.
> >
> >
> >
> >         Maybe Hive can create the materialized view, and we can just
> query the
> >         underlying Hbase store for lower latency responses?
> >
> >
> >
> >         What would be a good solution for this?
> >
> >
> >
> >         --gautham
> >
> >
> >
> >
> >
> >
> >
> >         --gautham
> >
> >
> >
> >
> >
> >     --
> >
> >     Thanks & Regards,
> >     Anil Gupta
> >
>
> --
> nicolas
>

Mime
View raw message