phoenix-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Gabriel Reid <gabriel.r...@gmail.com>
Subject Re: Using Phoenix Bulk Upload CSV to upload 200GB data
Date Wed, 16 Sep 2015 19:15:18 GMT
Yes, there is post-processing that goes on within the driver program (i.e.
the command line tool with which you started the import job).

The MapReduce job actually just creates HFiles, and then the
post-processing simply involves telling HBase to use these HFiles. If your
terminal closed while running the tool, then the HFiles won't be handed
over to HBase, which will result in what you're seeing.

I usually start import jobs like this using screen [1] so that losing a
client terminal connection won't get in the way of the full job completing.


- Gabriel



1. https://www.gnu.org/software/screen/manual/screen.html

On Wed, Sep 16, 2015 at 9:07 PM, Gaurav Kanade <gaurav.kanade@gmail.com>
wrote:

> Sure, attached below the job counter values. I checked the final status of
> the job and it said succeeded. I could not see the import tool exactly
> because I ran it overnight and my machine rebooted at some point for some
> updates - I wonder if there is some post-processing after the MR job which
> might have failed due to this ?
>
> Thanks for the help !
> ----------------
> Logged in as: dr.who
> Counters for job_1442389862209_0002
> Application Job
>
>    - Overview
>    <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/job/job_1442389862209_0002>
>    - Counters
>    <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/jobcounters/job_1442389862209_0002>
>    - Configuration
>    <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/conf/job_1442389862209_0002>
>    - Map tasks
>    <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/tasks/job_1442389862209_0002/m>
>    - Reduce tasks
>    <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/tasks/job_1442389862209_0002/r>
>
> Tools
> Counter Group Counters File System Counters
> Name
> Map
> Reduce
> Total
> FILE: Number of bytes read
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_BYTES_READ>
1520770904675
> 2604849340144 4125620244819 FILE: Number of bytes written
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_BYTES_WRITTEN>
3031784709196
> 2616689890216 5648474599412 FILE: Number of large read operations
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_LARGE_READ_OPS>
0
> 0 0 FILE: Number of read operations
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_READ_OPS>
0
> 0 0 FILE: Number of write operations
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/FILE_WRITE_OPS>
0
> 0 0 WASB: Number of bytes read
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_BYTES_READ>
186405294283
> 0 186405294283 WASB: Number of bytes written
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_BYTES_WRITTEN>
0
> 363027342839 363027342839 WASB: Number of large read operations
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_LARGE_READ_OPS>
0
> 0 0 WASB: Number of read operations
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_READ_OPS>
0
> 0 0 WASB: Number of write operations
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.FileSystemCounter/WASB_WRITE_OPS>
0
> 0 0
> Job Counters
> Name
> Map
> Reduce
> Total
> Launched map tasks
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/TOTAL_LAUNCHED_MAPS>
0
> 0 348 Launched reduce tasks
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/TOTAL_LAUNCHED_REDUCES>
0
> 0 9 Rack-local map tasks
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/RACK_LOCAL_MAPS>
0
> 0 348 Total megabyte-seconds taken by all map tasks
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MB_MILLIS_MAPS>
0
> 0 460560315648 Total megabyte-seconds taken by all reduce tasks
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MB_MILLIS_REDUCES>
0
> 0 158604449280 Total time spent by all map tasks (ms)
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MILLIS_MAPS>
0
> 0 599687911 Total time spent by all maps in occupied slots (ms)
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/SLOTS_MILLIS_MAPS>
0
> 0 599687911 Total time spent by all reduce tasks (ms)
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/MILLIS_REDUCES>
0
> 0 103258105 Total time spent by all reduces in occupied slots (ms)
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/SLOTS_MILLIS_REDUCES>
0
> 0 206516210 Total vcore-seconds taken by all map tasks
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/VCORES_MILLIS_MAPS>
0
> 0 599687911 Total vcore-seconds taken by all reduce tasks
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.JobCounter/VCORES_MILLIS_REDUCES>
0
> 0 103258105
> Map-Reduce Framework
> Name
> Map
> Reduce
> Total
> Combine input records
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/COMBINE_INPUT_RECORDS>
0
> 0 0 Combine output records
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/COMBINE_OUTPUT_RECORDS>
0
> 0 0 CPU time spent (ms)
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/CPU_MILLISECONDS>
162773540
> 90154160 252927700 Failed Shuffles
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/FAILED_SHUFFLE>
0
> 0 0 GC time elapsed (ms)
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/GC_TIME_MILLIS>
7667781
> 1607188 9274969 Input split bytes
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/SPLIT_RAW_BYTES>
52548
> 0 52548 Map input records
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_INPUT_RECORDS>
861890673
> 0 861890673 Map output bytes
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_OUTPUT_BYTES>
1488284643774
> 0 1488284643774 Map output materialized bytes
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_OUTPUT_MATERIALIZED_BYTES>
1515865164102
> 0 1515865164102 Map output records
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MAP_OUTPUT_RECORDS>
13790250768
> 0 13790250768 Merged Map outputs
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/MERGED_MAP_OUTPUTS>
0
> 3132 3132 Physical memory (bytes) snapshot
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/PHYSICAL_MEMORY_BYTES>
192242380800
> 4546826240 196789207040 Reduce input groups
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_INPUT_GROUPS>
0
> 861890673 861890673 Reduce input records
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_INPUT_RECORDS>
0
> 13790250768 13790250768 Reduce output records
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_OUTPUT_RECORDS>
0
> 13790250768 13790250768 Reduce shuffle bytes
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/REDUCE_SHUFFLE_BYTES>
0
> 1515865164102 1515865164102 Shuffled Maps
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/SHUFFLED_MAPS>
0
> 3132 3132 Spilled Records
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/SPILLED_RECORDS>
27580501536
> 23694179168 51274680704 Total committed heap usage (bytes)
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/COMMITTED_HEAP_BYTES>
186401685504
> 3023044608 189424730112 Virtual memory (bytes) snapshot
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.TaskCounter/VIRTUAL_MEMORY_BYTES>
537370951680
> 19158048768 556529000448
> Phoenix MapReduce Import
> Name
> Map
> Reduce
> Total
> Upserts Done
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Phoenix%20MapReduce%20Import/Upserts%20Done>
861890673
> 0 861890673
> Shuffle Errors
> Name
> Map
> Reduce
> Total
> BAD_ID
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/BAD_ID>
0
> 0 0 CONNECTION
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/CONNECTION>
0
> 0 0 IO_ERROR
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/IO_ERROR>
0
> 0 0 WRONG_LENGTH
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/WRONG_LENGTH>
0
> 0 0 WRONG_MAP
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/WRONG_MAP>
0
> 0 0 WRONG_REDUCE
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/Shuffle%20Errors/WRONG_REDUCE>
0
> 0 0
> File Input Format Counters
> Name
> Map
> Reduce
> Total
> Bytes Read
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter/BYTES_READ>
186395934997
> 0 186395934997
> File Output Format Counters
> Name
> Map
> Reduce
> Total
> Bytes Written
> <http://headnode0.ctlynvnzlysu3nnyyhqmcwjbee.gx.internal.cloudapp.net:19888/jobhistory/singlejobcounter/job_1442389862209_0002/org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter/BYTES_WRITTEN>
0
> 363027342839 363027342839
>
> On 16 September 2015 at 11:46, Gabriel Reid <gabriel.reid@gmail.com>
> wrote:
>
>> Can you view (and post) the job counters values from the import job?
>> These should be visible in the job history server.
>>
>> Also, did you see the import tool exit successfully (in the terminal
>> where you started it?)
>>
>> - Gabriel
>>
>> On Wed, Sep 16, 2015 at 6:24 PM, Gaurav Kanade <gaurav.kanade@gmail.com>
>> wrote:
>> > Hi guys
>> >
>> > I was able to get this to work after using bigger VMs for data nodes;
>> > however now the bigger problem I am facing is after my MR job completes
>> > successfully I am not seeing any rows loaded in my table (count shows 0
>> both
>> > via phoenix and hbase)
>> >
>> > Am I missing something simple ?
>> >
>> > Thanks
>> > Gaurav
>> >
>> >
>> > On 12 September 2015 at 11:16, Gabriel Reid <gabriel.reid@gmail.com>
>> wrote:
>> >>
>> >> Around 1400 mappers sounds about normal to me -- I assume your block
>> >> size on HDFS is 128 MB, which works out to 1500 mappers for 200 GB of
>> >> input.
>> >>
>> >> To add to what Krishna asked, can you be a bit more specific on what
>> >> you're seeing (in log files or elsewhere) which leads you to believe
>> >> the data nodes are running out of capacity? Are map tasks failing?
>> >>
>> >> If this is indeed a capacity issue, one thing you should ensure is
>> >> that map output comression is enabled. This doc from Cloudera explains
>> >> this (and the same information applies whether you're using CDH or
>> >> not) -
>> >>
>> http://www.cloudera.com/content/cloudera/en/documentation/cdh4/latest/CDH4-Installation-Guide/cdh4ig_topic_23_3.html
>> >>
>> >> In any case, apart from that there isn't any basic thing that you're
>> >> probably missing, so any additional information that you can supply
>> >> about what you're running into would be useful.
>> >>
>> >> - Gabriel
>> >>
>> >>
>> >> On Sat, Sep 12, 2015 at 2:17 AM, Krishna <research800@gmail.com>
>> wrote:
>> >> > 1400 mappers on 9 nodes is about 155 mappers per datanode which
>> sounds
>> >> > high
>> >> > to me. There are very few specifics in your mail. Are you using YARN?
>> >> > Can
>> >> > you provide details like table structure, # of rows & columns,
etc.
>> Do
>> >> > you
>> >> > have an error stack?
>> >> >
>> >> >
>> >> > On Friday, September 11, 2015, Gaurav Kanade <
>> gaurav.kanade@gmail.com>
>> >> > wrote:
>> >> >>
>> >> >> Hi All
>> >> >>
>> >> >> I am new to Apache Phoenix (and relatively new to MR in general)
>> but I
>> >> >> am
>> >> >> trying a bulk insert of a 200GB tar separated file in an HBase
>> table.
>> >> >> This
>> >> >> seems to start off fine and kicks off about ~1400 mappers and 9
>> >> >> reducers (I
>> >> >> have 9 data nodes in my setup).
>> >> >>
>> >> >> At some point I seem to be running into problems with this process
>> as
>> >> >> it
>> >> >> seems the data nodes run out of capacity (from what I can see my
>> data
>> >> >> nodes
>> >> >> have 400GB local space). It does seem that certain reducers eat
up
>> most
>> >> >> of
>> >> >> the capacity on these - thus slowing down the process to a crawl
and
>> >> >> ultimately leading to Node Managers complaining that Node Health
is
>> bad
>> >> >> (log-dirs and local-dirs are bad)
>> >> >>
>> >> >> Is there some inherent setting I am missing that I need to set
up
>> for
>> >> >> the
>> >> >> particular job ?
>> >> >>
>> >> >> Any pointers would be appreciated
>> >> >>
>> >> >> Thanks
>> >> >>
>> >> >> --
>> >> >> Gaurav Kanade,
>> >> >> Software Engineer
>> >> >> Big Data
>> >> >> Cloud and Enterprise Division
>> >> >> Microsoft
>> >
>> >
>> >
>> >
>> > --
>> > Gaurav Kanade,
>> > Software Engineer
>> > Big Data
>> > Cloud and Enterprise Division
>> > Microsoft
>>
>
>
>
> --
> Gaurav Kanade,
> Software Engineer
> Big Data
> Cloud and Enterprise Division
> Microsoft
>

Mime
View raw message